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UniVersitat de Barcelona, Martı´ i Franqués 1

08028-Barcelona, Spain

ReceiVed May 28, 1999

Synthetic peptides have a successful record of immunological
applications as models of continuous epitopes or immunogens
capable of eliciting antibodies of predetermined specificity.1 The
peptide approach has been crucial for the molecular dissection
of protein antigens and has also resulted in useful applications,
including peptide-based vaccines.2 The success of the methodol-
ogy, however, tends to obscure the fact that most antigenic sites
in proteins arediscontinuous, that is, they involve residues remote
from each other in the sequence, or even belonging to independent
protein chains, which are brought into spatial proximity upon
folding of the antigen.

In contrast to continuous antigenic sites, which in general can
be adequately reproduced by linear peptides, discontinuous protein
antigenic sites pose serious challenges to peptide chemists, since
attempts to design and reproduce them synthetically must not only
incorporate into a single molecule different sequences but do it
so that the antigenically relevant areas are displayed in the proper
orientation for antibody recognition.3 In principle, a rational
approach to this problem requires at least two types of informa-
tion: (i) the three-dimensional structure of the antigen, and (ii)
the identity of the residues involved in antigenic recognition.

Foot-and-mouth disease virus (FMDV) is a good candidate to
test this approach, since its crystal structure is known4 and it has
one such discontinuous site (site D), involving three residues from
envelope protein VP2 and one each from VP1 and VP3.5 These
five amino acids cluster within a discrete area on the interface
between VP1, VP2, and VP3,4 and four of them are located on
highly exposed loops (Figure 1). Site D is involved in FMDV

(serotype O) binding to heparan sulfate units on the host cell
surface and thus plays an important role in the mechanisms of
cell entry and viral infectivity.6 We were therefore interested in
designing a peptide that could act as a mimic of the antigenic
site, capable of eliciting virus-reactive, ideally neutralizing, anti-
bodies.

The goal of our design was to link the three VP1-VP3 loops
in such a way that the five antigenically critical amino acids and
neighbors with interfering van der Waals spheres would be
displayed “surface-exposed” on the same side of the construction
and in native-like orientation. The five residues define distances
in the 10-30 Å range, well beyond the reach of conventional
organic scaffolds. We therefore chose to join the antiparallel
VP2-VP3 segments into a single sequence by means of a poly-
Pro7 helix, expected to provide some needed rigidity at the
“inside” part of the construction (Figure 1). The VP2-VP3 unit
was then linked to the VP1 segment by means of a disulfide
bridge.

The structural fitness of the design was evaluated by molecular
dynamics (MD).8 The most stable structures resulting from 100
cycles of 3-ps unrestricted MD at 750 K were found to be
relatively consistent with the native structure, particularly at the
five residues involved in antigenic recognition, whose CR-CR
distances did not deviate irreversibly from the native structure
but rather fluctuated around it within reasonable intervals (5-15
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Figure 1. Antigenic site D of FMDV, isolate C-S8c1, involves one loop
each from capsid protein VP1 (blue), VP2 (yellow), and VP3 (red). The
side chains of the five antigenically relevant residues (labeled with an
asterisk) are displayed. The VP2 and VP3 segments, antiparallel to each
other, have been joined by an 8-residue poly-Pro helix connecting the
carboxyl of Pro84 (VP2) and the amino group of Pro52 (VP3). Residues
Ile190 and Gln191 of VP1 (in gray) have been mutated to Pro to reinforce
the incipient poly-Pro conformation of this region. Residues Thr53 (VP3)
and Leu188 (VP1) (in green) have been mutated to Cys to allow linkage
of the VP2-VP3 and VP1 segments through a disulfide.
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Å). This analysis provided sufficient grounds for the synthesis
of the peptide (Figure 2).

The synthetic approach9 relied on the regioselective ligation
of 33-mer I [VP2(71-84)-Pro8-[Cys53]VP3(52-62)] and 7-mer
II, [Cys188,Pro190,191]VP1(188-194), by disulfide formation be-
tween their free and Npys-protected10 Cys residues, respectively.11

The resulting 40-residue heterodimeric peptide was satisfactorily
characterized by HPLC, amino acid analysis, and MALDI-TOF
mass spectroscopy after reverse phase purification. CD analysis12

showed low levels of poly-Pro II conformation.7

Validation of this synthetic peptide as a model of the antigenic
site D of FMDV C-S8c1 was achieved by immunization of guinea
pigs.13 Antisera raised against the peptide reacted specifically with
plate-bound FMDV in ELISA.14 Of higher significance was the
fact that the antisera competed in ELISA15 for the virus with the
same monoclonal antibodies used to define site D (Figure 3),
proving that the peptide was able to induce an immune response
targeted roughly at the same region than the virus. Further

confirmation of the antigenic mimicry attained with the peptide
came from neutralization experiments (Figure 4), which showed
that peptide antibodies could achieve modest but unequivocal
levels of reduction in FMDV infectivity.16 Taken together, these
results demonstrate a substantial degree of reproduction of
discontinuous antigenic site D of FMDV and therefore support
the validity of a structure-guided approach to this type of problem.
The presence of a modular poly-Pro unit is particularly fit for
structure-activity studies in which the number, configuration, and
replaceability of Pro residues can be investigated, with a view to
further refine the immunological performance of the corresponding
peptides. This work is presently under realization.
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Figure 2. Retrosynthetic analysis of the peptide model of site D of
FMDV. The five antigenically critical amino acids are numbered. Residues
mutated from the native structure are underlined. Regioselective hetero-
disulfide formation is favored by the use of the Cys-protecting-activating
group Npys on one of the fragments.

Figure 3. ELISA of the competition between antipeptide sera and
peroxidase-labeled, site D-specific monoclonal antibody 5C44 for plate-
bound FMDV.[, b, 9, and2 points correspond to antisera from animals
1-4, respectively.O points correspond to a negative control experiment
between antipeptide sera from animal 2 and SD6, a noncompeting mono-
clonal antibody mapping at an antigenic site other than D.

Figure 4. Neutralization titers of antipeptide and preimmune sera in a
plaque reduction assay.
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